def __init__(self, n_outputs, train=True):
super(ImageNet, self).__init__(
conv1=L.Convolution2D(None, 96, 11, stride=4),
bn1=L.BatchNormalization(96),
conv2=L.Convolution2D(None, 128, 5, pad=2),
bn2=L.BatchNormalization(128),
conv3=L.Convolution2D(None, 256, 3, pad=1),
conv4=L.Convolution2D(None, 384, 3, pad=1),
l5=L.Linear(None, 512),
l6=L.Linear(512, n_outputs),
)
for param in self.params():
param.data[...] = np.random.uniform(-0.1, 0.1, param.data.shape)
self.train = train
评论列表
文章目录