def get_data(n_train, n_test, nb_classes):
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
img_rows, img_cols = (28,28)
# make some that are the same
X_digits = {ind:X_train[np.where(y_train == ind)] for ind in range(10) }
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
X_train = X_train[:n_train]
X_test = X_test[:n_test]
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train[:n_train], nb_classes)
Y_test = np_utils.to_categorical(y_test[:n_test], nb_classes)
return X_train, Y_train, X_test, Y_test
评论列表
文章目录