def load_data():
# loading mnist dataset
(X_train, y_train), (X_val, y_val) = mnist.load_data()
# adding a singleton dimension and rescale to [0,1]
X_train = np.asarray(np.expand_dims(X_train,1))/float(255)
X_val = np.asarray(np.expand_dims(X_val,1))/float(255)
# labels to categorical vectors
uniquelbls = np.unique(y_train)
nb_classes = uniquelbls.shape[0]
zbn = np.min(uniquelbls) # zero based numbering
y_train = np_utils.to_categorical(y_train-zbn, nb_classes)
y_val = np_utils.to_categorical(y_val-zbn, nb_classes)
return (X_train, y_train), (X_val, y_val)
评论列表
文章目录