def get_data():
# the data, shuffled and split between tran and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)[:max_train_samples]
X_test = X_test.reshape(10000, 784)[:max_test_samples]
X_train = X_train.astype("float32") / 255
X_test = X_test.astype("float32") / 255
# convert class vectors to binary class matrices
y_train = y_train[:max_train_samples]
y_test = y_test[:max_test_samples]
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
test_ids = np.where(y_test == np.array(weighted_class))[0]
return (X_train, Y_train), (X_test, Y_test), test_ids
评论列表
文章目录