def deconv2d(input_, o_size, k_size, name='deconv2d'):
print name, 'input', ten_sh(input_)
print name, 'output', o_size
assert np.sum(np.mod(o_size[1:3], ten_sh(input_)[1:3]) - [0,0]) == 0
with tf.variable_scope(name):
init = ly.xavier_initializer_conv2d()
output = ly.convolution2d_transpose(input_, num_outputs=o_size[-1], \
kernel_size=k_size, stride=np.divide(o_size[1:3], ten_sh(input_)[1:3]), \
padding='SAME', weights_initializer=init, \
activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm)
return output
评论列表
文章目录