def netG(z, y, BATCH_SIZE):
# concat attribute y onto z
z = tf.concat([z,y], axis=1)
z = tcl.fully_connected(z, 4*4*512, activation_fn=tf.identity, scope='g_z')
#z = tcl.batch_norm(z)
z = tf.reshape(z, [BATCH_SIZE, 4, 4, 512])
#z = tf.nn.relu(z)
conv1 = tcl.convolution2d_transpose(z, 256, 5, 2, normalizer_fn=tcl.batch_norm, activation_fn=tf.nn.relu, weights_initializer=tf.random_normal_initializer(stddev=0.02), scope='g_conv1')
conv2 = tcl.convolution2d_transpose(conv1, 128, 5, 2, normalizer_fn=tcl.batch_norm, activation_fn=tf.nn.relu, weights_initializer=tf.random_normal_initializer(stddev=0.02), scope='g_conv2')
conv3 = tcl.convolution2d_transpose(conv2, 64, 5, 2, normalizer_fn=tcl.batch_norm, activation_fn=tf.nn.relu, weights_initializer=tf.random_normal_initializer(stddev=0.02), scope='g_conv3')
conv4 = tcl.convolution2d_transpose(conv3, 3, 5, 2, activation_fn=tf.nn.tanh, weights_initializer=tf.random_normal_initializer(stddev=0.02), scope='g_conv4')
print 'z:',z
print 'conv1:',conv1
print 'conv2:',conv2
print 'conv3:',conv3
print 'conv4:',conv4
print
print 'END G'
print
tf.add_to_collection('vars', z)
tf.add_to_collection('vars', conv1)
tf.add_to_collection('vars', conv2)
tf.add_to_collection('vars', conv3)
tf.add_to_collection('vars', conv4)
return conv4
评论列表
文章目录