def testDeconvWithoutBiasesProducesConv2dTranspose(self):
num_filters = 32
input_size = [5, 9, 11, 3]
expected_size = [5, 19, 23, num_filters]
stride = 2
padding = 'VALID'
with self.test_session() as sess:
images = random_ops.random_uniform(input_size, seed=1)
output_deconv = layers_lib.conv2d_transpose(
images,
num_filters, [3, 3],
stride=stride,
padding=padding,
activation_fn=None,
scope='conv7')
weights = variables.get_variables_by_name('conv7/weights')[0]
output_conv2d_transpose = nn_ops.conv2d_transpose(
images,
weights,
expected_size, [1, stride, stride, 1],
padding=padding)
sess.run(variables_lib.global_variables_initializer())
output_deconv, output_conv2d_transpose = sess.run(
[output_deconv, output_conv2d_transpose])
self.assertTrue(
np.isclose(output_deconv, output_conv2d_transpose, 1e-5, 1e-5).all())
layers_test.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录