def generator(z, label):
z = tf.concat(1, [z,label])
train = ly.fully_connected(
z, 1024, activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm)
train = tf.concat(1, [train, label])
train = ly.fully_connected(
z, 4*4*512, activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm)
train = tf.reshape(train, (-1, 4, 4, 512))
yb = tf.ones([FLAGS.batch_size, 4, 4, 10])*tf.reshape(label, [FLAGS.batch_size, 1, 1, 10])
train = tf.concat(3, [train, yb])
train = ly.conv2d_transpose(train, 256, 3, stride=2,
activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
train = ly.conv2d_transpose(train, 128, 3, stride=2,
activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
train = ly.conv2d_transpose(train, 64, 3, stride=2,
activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
train = ly.conv2d_transpose(train, 1, 3, stride=1,
activation_fn=tf.nn.tanh, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
return train
评论列表
文章目录