def linear_autoencoder_discriminator(
x, output_dim, hidden_sizes, encoding_dim,
scope='Discriminator', reuse=False, pretrained=None):
with tf.variable_scope(scope, reuse=reuse):
# Encoder.
for hsz in hidden_sizes:
x = tf.nn.elu(layers.linear(x, hsz))
encoding = x = layers.linear(x, encoding_dim)
# Decoder.
for hsz in reversed(hidden_sizes):
x = tf.nn.elu(layers.linear(x, hsz))
decoding = layers.linear(x, output_dim * output_dim)
if pretrained is not None:
tf.contrib.framework.init_from_checkpoint(
pretrained, {'Discriminator/': 'Discriminator/'})
return decoding, None
评论列表
文章目录