def __init__(self,embeddingSize,distinctTagNum,c2vPath,numHidden):
self.embeddingSize = embeddingSize
self.distinctTagNum = distinctTagNum
self.numHidden = numHidden
self.c2v = self.c2v(c2vPath)
self.words = tf.Variable(self.c2v,name = 'words')
with tf.variable_scope('Softmax') as scope:
self.W = tf.get_variable(shape=[numHidden *2,distinctTagNum],
initializer=tf.truncated_normal_initializer(stddev=0.01),
name='weights',
regularizer= l2_regularizer(0.001))
self.b = tf.Variable(tf.zeros([distinctTagNum],name='bias'))
self.trains_params = None
self.inp = tf.placeholder(tf.int32,shape=[None,nlp_segment.flags.max_sentence_len],name='input_placeholder')
评论列表
文章目录