def __init__(self):
self.embeddingSize = ner_tv.flags.embedding_dim
self.distinctTagNum = ner_tv.flags.tags_num
self.numHidden = ner_tv.flags.hidden_neural_size
self.c2v = load_word2Vec(ner_tv.word2vec_path)
self.words = tf.Variable(self.c2v,name = 'words')
self.sentence_length = ner_tv.flags.sentence_length
self.initial_learning_rate = ner_tv.flags.initial_learning_rate
with tf.variable_scope('Softmax') as scope:
self.W = tf.get_variable(shape=[self.numHidden *2,self.distinctTagNum],
initializer=tf.truncated_normal_initializer(stddev=0.01),
name='weights',
regularizer= l2_regularizer(0.001))
self.b = tf.Variable(tf.zeros([self.distinctTagNum],name='bias'))
self.trains_params = None
self.inp = tf.placeholder(tf.int32,shape=[None,self.sentence_length],name='input_placeholder')
self.model_save_path = ner_tv.training_model_bi_lstm
self.saver = tf.train.Saver()
评论列表
文章目录