def __init__(self,
num_class = 101,
keep_prob = 0.6,
batch_size = 3,
epoch=40,
lr = 1e-4):
self.IMG_WIDTH = 171
self.IMG_HEIGHT = 128
self.CROP_WIDTH = 112
self.CROP_HEIGHT = 112
self.graph = tf.Graph()
self.num_class = num_class
self.epoch = epoch
self.CLIP_LENGTH = 16
self.keep_prob = keep_prob
self.batch_size = batch_size
decay_epoch=10 #?5?epoch???????
# train clip: 9537*5 CLIP=5
# test clip: 3783*5 CLIP=5
# train clip: 9537*3 CLIP=3
# test clip: 3783*3 CLIP=3
self.n_step_epoch=int( 9537/batch_size)
with self.graph.as_default():
self.inputs = tf.placeholder(tf.float32, [None, self.CLIP_LENGTH, self.CROP_HEIGHT, self.CROP_WIDTH, 3])
self.labels = tf.placeholder(tf.int64, [batch_size,])
self.initializer = layers.xavier_initializer()
self.global_step = tf.Variable(0, trainable = False, name = "global_step")
self.lr = tf.train.exponential_decay(lr, self.global_step, int(decay_epoch*self.n_step_epoch), 1e-1, True)
tf.add_to_collection(tf.GraphKeys.GLOBAL_STEP, self.global_step)
评论列表
文章目录