def reconv2d(input_, o_size, k_size, name='reconv2d'):
print name, 'input', ten_sh(input_)
print name, 'output', o_size
input_ = tf.image.resize_nearest_neighbor(input_, o_size[:3])
with tf.variable_scope(name):
init = ly.xavier_initializer_conv2d()
output = ly.conv2d(input_, num_outputs=o_size[-1], kernel_size=k_size, stride=1,\
activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm, padding='SAME',\
weights_initializer=init)
return output
评论列表
文章目录