def _block_b(net, scope='BlockB'):
# 17 x 17 x 1024 grid
# default padding = SAME
# default stride = 1
with tf.variable_scope(scope):
with tf.variable_scope('Br1_Pool'):
br1 = layers.avg_pool2d(net, [3, 3], scope='Pool1_3x3')
br1 = layers.conv2d(br1, 128, [1, 1], scope='Conv1_1x1')
with tf.variable_scope('Br2_1x1'):
br2 = layers.conv2d(net, 384, [1, 1], scope='Conv1_1x1')
with tf.variable_scope('Br3_7x7'):
br3 = layers.conv2d(net, 192, [1, 1], scope='Conv1_1x1')
br3 = layers.conv2d(br3, 224, [1, 7], scope='Conv2_1x7')
br3 = layers.conv2d(br3, 256, [7, 1], scope='Conv3_7x1')
with tf.variable_scope('Br4_7x7Dbl'):
br4 = layers.conv2d(net, 192, [1, 1], scope='Conv1_1x1')
br4 = layers.conv2d(br4, 192, [1, 7], scope='Conv2_1x7')
br4 = layers.conv2d(br4, 224, [7, 1], scope='Conv3_7x1')
br4 = layers.conv2d(br4, 224, [1, 7], scope='Conv4_1x7')
br4 = layers.conv2d(br4, 256, [7, 1], scope='Conv5_7x1')
net = tf.concat(3, [br1, br2, br3, br4], name='Concat1')
# 17 x 17 x 1024
return net
build_inception_v4.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录