def semi_supervised_encoder_convolutional(input_tensor, z_dim, y_dim, batch_size, network_scale=1.0, img_res=28, img_channels=1):
f_multiplier = network_scale
net = tf.reshape(input_tensor, [-1, img_res, img_res, img_channels])
net = layers.conv2d(net, int(16*f_multiplier), 3, stride=2)
net = layers.conv2d(net, int(16*f_multiplier), 3, stride=1)
net = layers.conv2d(net, int(32*f_multiplier), 3, stride=2)
net = layers.conv2d(net, int(32*f_multiplier), 3, stride=1)
net = layers.conv2d(net, int(64*f_multiplier), 3, stride=2)
net = layers.conv2d(net, int(64*f_multiplier), 3, stride=1)
net = layers.conv2d(net, int(128*f_multiplier), 3, stride=2)
net = tf.reshape(net, [batch_size, -1])
net = layers.fully_connected(net, 1000)
y = layers.fully_connected(net, y_dim, activation_fn=None, normalizer_fn=None)
z = layers.fully_connected(net, z_dim, activation_fn=None)
return y, z
components.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录