def testDynamicOutputSizeWithRateTwoValidPadding(self):
num_filters = 32
input_size = [5, 9, 11, 3]
expected_size = [None, None, None, num_filters]
expected_size_dynamic = [5, 5, 7, num_filters]
with self.test_session():
images = array_ops.placeholder(np.float32,
[None, None, None, input_size[3]])
output = layers_lib.convolution2d(
images, num_filters, [3, 3], rate=2, padding='VALID')
variables_lib.global_variables_initializer().run()
self.assertEqual(output.op.name, 'Conv/Relu')
self.assertListEqual(output.get_shape().as_list(), expected_size)
eval_output = output.eval({images: np.zeros(input_size, np.float32)})
self.assertListEqual(list(eval_output.shape), expected_size_dynamic)
layers_test.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录