def Critic(img_in, scope, reuse=False):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("state_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=1, activation_fn=None)
return out
# models defined in the original code
评论列表
文章目录