def simple_model_w_feat_eng(img_in, num_actions, scope, reuse=False):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
out = layers.flatten(out)
# stddev = 1/n, where n = number of inputs
gauss_initializer = initializers.xavier_initializer(uniform=False)
with tf.variable_scope("action_value"):
out = layers.fully_connected(
out,
num_outputs=num_actions,
activation_fn=tf.nn.relu,
biases_initializer=None,
weights_initializer=gauss_initializer,
weights_regularizer=None)
return out
评论列表
文章目录