def to_loc(input, is_simple=False):
if len(input.get_shape()) == 4:
input = layers.flatten(input)
num_inputs = input.get_shape()[1]
num_outputs = 3 if is_simple else 6
W_init = tf.constant_initializer(
np.zeros((num_inputs, num_outputs)))
if is_simple:
b_init = tf.constant_initializer(np.array([1.,0.,0.]))
else:
b_init = tf.constant_initializer(np.array([1.,0.,0.,0.,1.,0.]))
return layers.fully_connected(input, num_outputs,
activation_fn=None,
weights_initializer=W_init,
biases_initializer=b_init)
评论列表
文章目录