def inference(input_img):
# input_latent = Input(batch_shape=noise_dim, dtype=im_dtype)
with tf.variable_scope('Net_Inf') as scope:
xx = layers.convolution2d(input_img, 128, kernel_size=(5,5), stride=(2, 2), padding='SAME', activation_fn=None)
xx = layers.batch_norm(xx)
xx = tf.nn.relu(xx)
xx = layers.convolution2d(xx, 256, kernel_size=(5,5), stride=(2, 2), padding='SAME', activation_fn=None)
xx = layers.batch_norm(xx)
xx = tf.nn.relu(xx)
xx = layers.convolution2d(xx, 512, kernel_size=(5,5), stride=(2, 2), padding='SAME', activation_fn=None)
xx = layers.batch_norm(xx)
xx = tf.nn.relu(xx)
xx = layers.flatten(xx)
xx = layers.fully_connected(xx, num_outputs=latent_size, activation_fn=None)
xx = layers.batch_norm(xx)
inf_latent = tf.nn.tanh(xx)
return inf_latent
# specify discriminative model
train_cifar_feature_matching_ali_tf.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录