train_mnist_feature_matching_tf.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:Semi_Supervised_GAN 作者: ChunyuanLI 项目源码 文件源码
def discriminator(input_img):
    # input_img = Input(batch_shape=(None, 3, 32, 32), dtype=im_dtype)
    with tf.variable_scope('Net_Dis') as scope:
        xx = layers.fully_connected(input_img, num_outputs=1000, activation_fn=None)
        xx = layers.batch_norm(xx)
        xx = tf.nn.relu(xx)
        xx = tf.nn.dropout(xx, 0.5)
        xx = layers.fully_connected(xx, num_outputs=500, activation_fn=None)
        xx = layers.batch_norm(xx)
        xx = tf.nn.relu(xx)
        xx = tf.nn.dropout(xx, 0.5)
        xx = layers.fully_connected(xx, num_outputs=250, activation_fn=None)
        xx = layers.batch_norm(xx)
        xx = tf.nn.relu(xx)
        xx = tf.nn.dropout(xx, 0.5)
        xx = layers.fully_connected(xx, num_outputs=250, activation_fn=None)
        xx = layers.batch_norm(xx)
        xx = tf.nn.relu(xx)
        xx = tf.nn.dropout(xx, 0.5)
        xx0 = layers.fully_connected(xx, num_outputs=250, activation_fn=None)
        xx = layers.batch_norm(xx0)
        xx = tf.nn.relu(xx)
        logits = layers.fully_connected(xx, label_size, activation_fn=None)

    return  logits, xx0

# pdb.set_trace()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号