def inference(input_img):
with tf.variable_scope('Net_Inf') as scope:
xx = layers.fully_connected(input_img, num_outputs=500, activation_fn=None)
xx = layers.batch_norm(xx)
xx = tf.nn.relu(xx)
xx = layers.fully_connected(xx, num_outputs=500, activation_fn=None)
xx = layers.batch_norm(xx)
xx = tf.nn.relu(xx)
xx = layers.fully_connected(xx, num_outputs=latent_size, activation_fn=None)
xx = layers.batch_norm(xx)
inf_latent = tf.nn.tanh(xx)
return inf_latent
# specify discriminative model
train_mnist_feature_matching_ali_tf.py 文件源码
python
阅读 15
收藏 0
点赞 0
评论 0
评论列表
文章目录