def _estimateAll(self):
self._estimateQParams()
self.iters[-1].Vl_estimate = self.fn.Norm(self.all_itr.calcDeltaVl()) \
if not self.params.bayesian \
else self._estimateBayesianVl()
self.iters[-1].Wl_estimate = self.fn.WorkModel(lvls=self.last_itr.get_lvls())
self.iters[-1].bias = self._estimateBias()
Ca = norm.ppf(self.params.confidence)
self.iters[-1].stat_error = np.inf if np.any(self.last_itr.M == 0) \
else Ca * \
np.sqrt(np.sum(self.Vl_estimate / self.last_itr.M))
评论列表
文章目录