def parallel_cone(pipe,cells,time,cone_input,cone_layer,Vis_dark,Vis_resting_potential):
# Initialize array of cone_response copying cone_input
cone_response = cone_input
for cell in cells:
if multiprocessing.current_process().name=="root":
progress = 100*(cell-cells[0])/len(cells)
stdout.write("\r progress: %d %%"% progress)
stdout.flush()
# Time-driven simulation
for t in np.arange(0,time):
# Update dynamics of the model
cone_layer[cell].feedInput(cone_input[cell,t])
cone_layer[cell].update()
# Record response
cone_response[cell,t] = (cone_layer[cell].LF_taum.last_values[0] -\
cone_layer[cell].LF_tauh.last_values[0] - Vis_dark - Vis_resting_potential)
pipe.send(cone_response[cells,:])
pipe.close()
#! ================
#! Class runNetwork
#! ================
评论列表
文章目录