def cross_validate(self, X, y):
print "fitting {} to the training set".format(self.name)
if self.param_grid is not None:
param_sets = list(ParameterGrid(self.param_grid))
n_param_sets = len(param_sets)
param_scores = []
for j, param_set in enumerate(param_sets):
print "--------------"
print "training the classifier..."
print "parameter set:"
for k, v in param_set.iteritems():
print "{}:{}".format(k, v)
param_score = self.evaluate(X, y, param_set=param_set)
param_scores.append(param_score)
p = np.argmax(np.array(param_scores))
self.best_param_set = param_sets[p]
print "best parameter set", self.best_param_set
print "best score:", param_scores[p]
else:
score = self.evaluate(X, y)
评论列表
文章目录