def parse_audit_files():
audit_paths = glob.glob('audit/workflow_mmlinear_started_20151026_17*')
audit_data = []
for path in audit_paths:
with open(path) as fh:
cp = ConfigParser()
cp.readfp(fh)
for sec in cp.sections():
dat = dict(cp.items(sec))
if 'train_lin' in dat['instance_name']:
ms = re.match('train_lin_trn([0-9]+|rest)_tst([0-9]+)_c([0-9\.]+)', dat['instance_name'])
if ms is None:
raise Exception('No match in name: ' + dat['instance_name'])
m = ms.groups()
dat['training_size'] = m[0]
dat['test_size'] = m[1]
dat['cost'] = m[2]
audit_data.append(dat)
db = dataset.connect('sqlite:///:memory:')
tbl = db['audit']
for d in audit_data:
tbl.insert(d)
return tbl
collect_rdataframe.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录