def main():
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument('tags', metavar='tag', nargs='+')
parser.add_argument('--fold', default='test',
help='identifier for file with the users to test on (default: test)')
args = parser.parse_args()
for model_tag in args.tags:
hps = hypers.hps_for_tag(model_tag)
dataset = Dataset(args.fold, hps, mode=Mode.inference)
path = common.resolve_xgboostmodel_path(model_tag)
logging.info('Loading model with tag {}'.format(model_tag))
model = xgb.Booster(model_file=path)
logging.info('Computing probs for tag {}'.format(model_tag))
with time_me('Computed probs for {}'.format(model_tag), mode='stderr'):
pdict = get_pdict(model, dataset)
logging.info('Got probs for {} users'.format(len(pdict)))
# TODO: might want to enforce some namespace separation between
# rnn-generated pdicts and ones coming from xgboost models?
common.save_pdict_for_tag(model_tag, pdict, args.fold)
precompute_probs.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录