def plot_Isomap_k_d1(*data):
'''
test the performance with different n_neighbors and reduce to 1-D
:param data: train_data, train_value
:return: None
'''
X,y=data
Ks=[1,5,25,y.size-1]
fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=1,n_neighbors=k)
X_r=isomap.fit_transform(X)
ax=fig.add_subplot(2,2,i+1)
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),
(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2),)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),
label="target= {0}".format(label),color=color)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k={0}".format(k))
plt.suptitle("Isomap")
plt.show()
评论列表
文章目录