def main():
audio_embeddings_dict = cPickle.load(open(AUDIO_EMBEDDINGS_DICT, 'rb'))
audio_label_indices_dict = cPickle.load(open(AUDIO_LABEL_INDICES_DICT, 'rb'))
X = []
ids = []
for k in audio_embeddings_dict.keys()[:EXAMPLES_SIZE_LIMIT]:
for embedding in audio_embeddings_dict[k]:
X.append(embedding)
ids.append(audio_label_indices_dict[k])
# Apply t-SNE
tsne = TSNE(n_components=N_COMPONENTS, perplexity=PERPLEXITY, \
learning_rate=LEARNING_RATE, n_iter=N_ITER)
Xtransformed = tsne.fit_transform(X)
# save the embeddings along with the list of class IDs associated with
# the clip from which it was taken.
# Header for output file
if N_COMPONENTS == 2:
output_lines = ["dim1,dim2,labels"]
elif N_COMPONENTS == 3:
output_lines = ["dim1,dim2,dim3,labels"]
for i in range(len(Xtransformed)):
output_lines.append(",".join([str(j) for j in Xtransformed[i]])+ \
"," + ",".join([str(k) for k in ids[i]]))
output_file_contents = "\n".join(output_lines)
with open(OUTPUT_FILENAME, 'w') as fh:
fh.write(output_file_contents)
visualize_embeddings_tsne.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录