def main():
Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST()
dbn = DBN([1000, 750, 500], UnsupervisedModel=AutoEncoder)
# dbn = DBN([1000, 750, 500, 10])
output = dbn.fit(Xtrain, pretrain_epochs=2)
print "output.shape", output.shape
# sample before using t-SNE because it requires lots of RAM
sample_size = 600
tsne = TSNE()
reduced = tsne.fit_transform(output[:sample_size])
plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain[:sample_size], alpha=0.5)
plt.title("t-SNE visualization")
plt.show()
# t-SNE on raw data
reduced = tsne.fit_transform(Xtrain[:sample_size])
plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain[:sample_size], alpha=0.5)
plt.title("t-SNE visualization")
plt.show()
pca = PCA()
reduced = pca.fit_transform(output)
plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain, alpha=0.5)
plt.title("PCA visualization")
plt.show()
评论列表
文章目录