def restore(self, restored_tensors, restored_shapes):
weights = restored_tensors[:len(restored_tensors) // 2]
biases = restored_tensors[len(restored_tensors) // 2:]
params = self._canonical_to_params(weights, biases)
if not isinstance(params, tuple):
params = (params,)
assign_ops = [
state_ops.assign(
variable, param, validate_shape=False)
for variable, param in zip(self._variables, params)
]
return control_flow_ops.group(*assign_ops)
cudnn_rnn_ops.py 文件源码
python
阅读 17
收藏 0
点赞 0
评论 0
评论列表
文章目录