variable_clipping_optimizer.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:lsdc 作者: febert 项目源码 文件源码
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
    with ops.name_scope(name, self._name) as name:
      update_op = self._opt.apply_gradients(
          grads_and_vars, global_step=global_step)
      clip_update_ops = []
      with ops.control_dependencies([update_op]):
        for grad, var in grads_and_vars:
          if grad is None or var not in self._vars_to_clip_dims:
            continue
          with ops.name_scope("clip_" + var.op.name):
            if isinstance(grad, ops.Tensor):
              clip_update_ops.append(self._clip_dense(var))
            else:
              clip_update_ops.append(self._clip_sparse(grad, var))

      # In case no var was clipped, still need to run the update_op.
      return control_flow_ops.group(*([update_op] + clip_update_ops), name=name)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号