updater.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:chainer-gan-experiments 作者: Aixile 项目源码 文件源码
def update_core(self):
        xp = self.gen.xp
        self._iter += 1

        opt_g = self.get_optimizer('gen')
        opt_d = self.get_optimizer('dis')

        data_z0 = self.get_latent_code_batch()
        x_fake0 = self.gen(Variable(data_z0))
        data_z1 = self.get_latent_code_batch()
        x_fake1 = self.gen(Variable(data_z1))
        data_x = self.get_real_image_batch()
        x_real = Variable(data_x)

        eta = np.random.rand()
        x_inter = Variable((data_x * eta + (1.0 - eta) * x_fake0.data).astype('f'))

        dis_x_fake0 = self.dis(x_fake0)
        dis_x_fake1 = self.dis(x_fake1)
        dis_x_real = self.dis(x_real)

        loss_gen = loss_l2_norm(dis_x_fake0, dis_x_real) + \
                    loss_l2_norm(dis_x_fake1, dis_x_real) - \
                    loss_l2_norm(dis_x_fake0, dis_x_fake1)
        #print(loss_gen.data)

        chainer.report({'loss': loss_gen}, self.gen)
        opt_g.zero_grads()
        loss_gen.backward()
        opt_g.update()

        x_fake0.unchain_backward()
        x_fake1.unchain_backward()

        loss_surrogate = loss_l2_norm(dis_x_fake0, dis_x_fake1) - \
                    loss_l2_norm(dis_x_fake0, 0.0) + \
                    loss_l2_norm(dis_x_real, 0.0) - \
                    loss_l2_norm(dis_x_real, dis_x_fake1)

        dis_x_inter = self.dis(x_inter, retain_forward=True)
        g = xp.ones_like(dis_x_inter.data)
        t0 = dis_x_inter.data - dis_x_fake1.data
        t0_norm = xp.sum(t0**2, axis=(1)) ** 0.5
        t1_norm = xp.sum(dis_x_inter.data**2, axis=(1)) ** 0.5
        t_g = ((t0.transpose() / t0_norm) - (dis_x_inter.data.transpose()) / t1_norm).transpose()
        g = g * t_g

        grad = self.dis.differentiable_backward(Variable(g))
        grad_l2 = F.sqrt(F.sum(grad**2, axis=(1, 2, 3)))
        loss_gp = self._lambda_gp * loss_l2(grad_l2, 1.0)

        loss_dis = loss_surrogate + loss_gp

        opt_d.zero_grads()
        loss_dis.backward()
        opt_d.update()

        chainer.report({'loss': loss_dis, 'loss_gp': loss_gp}, self.dis)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号