def __call__(self, S, h):
batch_size, src_len, hidden_size = S.data.shape
S = self.inner_weight(F.reshape(S, (batch_size * src_len, hidden_size)))
S = F.reshape(S, (batch_size, src_len, hidden_size))
a = F.softmax(F.squeeze(F.batch_matmul(S, h), axis = 2))
return a
# MLP layer, as of Bahdanau+ 15
评论列表
文章目录