def forward(self, ws, cs, ls):
"""
xs [(w,s,p,y), ..., ]
w: word, c: char, l: length, y: label
"""
batchsize = len(ws)
# cs: [(sentence length, max word length)]
ws = map(self.emb_word, ws)
# ls: [(sentence length, char dim)]
# before conv: (sent len, 1, max word len, char_size)
# after conv: (sent len, char_size, max word len, 1)
# after max_pool: (sent len, char_size, 1, 1)
cs = [F.squeeze(
F.max_pooling_2d(
self.conv_char(
F.expand_dims(
self.emb_char(c), 1)), (l, 1)))
for c, l in zip(cs, ls)]
# [(sentence length, (word_dim + char_dim))]
xs_f = [F.dropout(F.concat([w, c]),
self.dropout_ratio, train=self.train) for w, c in zip(ws, cs)]
xs_b = [x[::-1] for x in xs_f]
cx_f, hx_f, cx_b, hx_b = self._init_state(batchsize)
_, _, hs_f = self.lstm_f(hx_f, cx_f, xs_f, train=self.train)
_, _, hs_b = self.lstm_b(hx_b, cx_b, xs_b, train=self.train)
hs_b = [x[::-1] for x in hs_b]
# ys: [(sentence length, number of category)]
hs = [F.concat([h_f, h_b]) for h_f, h_b in zip(hs_f, hs_b)]
cat_ys = [self.linear_cat2(F.relu(self.linear_cat1(h))) for h in hs]
dep_ys = [self.biaffine(
F.relu(F.dropout(self.linear_dep(h), 0.32, train=self.train)),
F.relu(F.dropout(self.linear_head(h), 0.32, train=self.train))) for h in hs]
return cat_ys, dep_ys
评论列表
文章目录