def forward_one_step(self, X):
batchsize = X.shape[0]
seq_length = X.shape[1]
ksize = self.kernel_size
if seq_length < ksize:
self.reset_state()
return self.__call__(X, return_last=True)
xt = X[:, -ksize:]
enmbedding = self.embed(xt)
enmbedding = F.swapaxes(enmbedding, 1, 2)
out_data = self._forward_layer_one_step(0, enmbedding)[:, :, -ksize:]
in_data = [out_data]
for layer_index in range(1, self.num_layers):
out_data = self._forward_layer_one_step(layer_index, F.concat(in_data) if self.densely_connected else in_data[-1])[:, :, -ksize:] # dense conv
in_data.append(out_data)
out_data = F.concat(in_data) if self.densely_connected else out_data # dense conv
if self.using_dropout:
out_data = F.dropout(out_data, ratio=self.dropout)
out_data = out_data[..., -1, None]
out_data = self.fc(out_data)
out_data = F.reshape(F.swapaxes(out_data, 1, 2), (-1, self.vocab_size))
return out_data
评论列表
文章目录