def check_forward(self, x_data):
x = chainer.Variable(x_data)
y = functions.softplus(x, beta=self.beta)
x_value = cuda.to_cpu(x_data)
y_exp = numpy.log(1 + numpy.exp(self.beta * x_value)) / self.beta
self.assertEqual(y.data.dtype, self.dtype)
gradient_check.assert_allclose(
y_exp, y.data, **self.check_forward_options)
评论列表
文章目录