def forward(self, ws, cs):
batchsize, length, max_word_len = cs.shape
ws = self.emb_word(ws) # (batch, length, word_dim)
cs = F.reshape(
F.max_pooling_2d(
self.conv_char(
F.reshape(
self.emb_char(cs),
(batchsize * length, 1, max_word_len, 50))), (max_word_len, 1)),
(batchsize, length, self.char_dim))
hs = F.transpose(F.concat([ws, cs], 2), (1, 0, 2))
hs = F.dropout(hs, self.dropout_ratio, train=self.train)
hs = F.split_axis(hs, length, 0)
hs_f = []
hs_b = []
self._init_state()
for h_in_f, h_in_b in zip(hs, reversed(hs)):
h_f = self.lstm_f2(self.lstm_f1(F.reshape(h_in_f, (batchsize, -1))))
hs_f.append(h_f)
h_b = self.lstm_b2(self.lstm_b1(F.reshape(h_in_b, (batchsize, -1))))
hs_b.append(h_b)
hs = [F.concat([h_f, h_b]) for h_f, h_b in zip(hs_f, reversed(hs_b))]
cat_ys = [self.linear_cat2(F.dropout(
F.elu(self.linear_cat1(h)), 0.5, train=self.train)) for h in hs]
hs = [F.reshape(h, (length, -1)) for h in \
F.split_axis(F.transpose(F.stack(hs, 2), (0, 2, 1)), batchsize, 0)]
dep_ys = [self.biaffine(
F.relu(F.dropout(self.linear_dep(h), 0.32, train=self.train)),
F.relu(F.dropout(self.linear_head(h), 0.32, train=self.train))) for h in hs]
return cat_ys, dep_ys
评论列表
文章目录