def __call__(self, x, action):
h1 = F.relu(self.conv1(x))
index = F.expand_dims(np.array(action, dtype=np.int32), axis=0)
h2 = F.relu(self.embed_conv2d(index, x))
h = F.concat((h1, h2), axis=1) # Glue together the action convolutions
h = F.relu(self.conv2(h))
h = F.relu(self.conv3(h))
h = F.relu(self.conv_gru1(h))
h_img = F.relu(self.deconv1(h))
h_img = self.deconv2(h_img)
h_action = F.relu(self.linear1(h))
h_action = self.linear2(h_action)
return h_img, h_action
predictive_autoencoder.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录