convolution_rbm.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:SeRanet 作者: corochann 项目源码 文件源码
def free_energy(self, v):
        """
        :param Variable (batch_size, in_channels, image_height, image_width) - input data (training data)
        :return: scalar
        """
        batch_size = v.data.shape[0]
        in_channels = self.in_channels
        real = self.real
        if real == 0:
            '''
            visible layer is 0, 1 (bit)
            vbias_term = 1 * SUM(a(i) * v(i))
            '''
            v_sum = F.sum(v, axis=(2, 3))  # sum over image_height & image_width
            # Originally, it should return sum for each batch.
            # but it returns scalar, which is sum over batches, since sum is used at the end anyway.
            vbias_term = F.sum(F.matmul(v_sum, self.conv.a))
            wx_b = self.conv(v)

        else:
            '''
            visible layer takes real value
            vbias_term = 0.5 * SUM((v(i)-a(i)) * (v(i) - a(i)))
            '''
            #TODO: check
            #m = Variable(xp.ones((batch_size, 1), dtype=xp.float32))
            n = F.reshape(self.conv.a, (1, in_channels, 1, 1))
            xp = cuda.get_array_module(n.data)
            std_ch = xp.reshape(self.std, (1, in_channels, 1, 1))

            #v_ = v - F.matmul(m, n)
            v_ = (v - F.broadcast_to(n, v.data.shape)) / std_ch
            vbias_term = F.sum(0.5 * v_ * v_)
            wx_b = self.conv(v / std_ch)


        hidden_term = F.sum(F.log(1 + F.exp(wx_b)))
        # print('vbias = ', vbias_term.data, ', hidden = ', hidden_term.data, 'F.exp(wx_b) = ', F.exp(wx_b).data)
        return - vbias_term - hidden_term
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号