yolov2_caltech.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:chainer-object-detection 作者: dsanno 项目源码 文件源码
def __call__(self, x):
        h = F.leaky_relu(self.bias1(self.bn1(self.conv1(x), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias2(self.bn2(self.conv2(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias3(self.bn3(self.conv3(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias4(self.bn4(self.conv4(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias5(self.bn5(self.conv5(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias6(self.bn6(self.conv6(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias7(self.bn7(self.conv7(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias8(self.bn8(self.conv8(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias9(self.bn9(self.conv9(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias10(self.bn10(self.conv10(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias11(self.bn11(self.conv11(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias12(self.bn12(self.conv12(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias13(self.bn13(self.conv13(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias14(self.bn14(self.conv14(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias15(self.bn15(self.conv15(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias16(self.bn16(self.conv16(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias17(self.bn17(self.conv17(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias18(self.bn18(self.conv18(h), finetune=self.finetune)), slope=0.1)
        h = F.average_pooling_2d(h, h.shape[-2:])
        h = self.fc19(h)
        return h
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号