def __call__(self, x, train=False):
h = self.conv1(x, train=train)
for i in six.moves.range(len(self.strides)):
for ii in six.moves.range(len(self.strides[i])):
name = 'res_block{}_{}'.format(i, ii)
h = self[name](h, train=train)
batch, channels, height, width = h.data.shape
h = F.reshape(F.average_pooling_2d(h, (height, width)), (batch, channels, 1, 1))
return F.reshape(self.linear(h, train=train), (batch, self.category_num))
pyramidal_residual_networks.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录