def check_forward(self, x_data, use_cudnn=True):
x = chainer.Variable(x_data)
y = functions.average_pooling_2d(x, 3, stride=2,
pad=1, use_cudnn=use_cudnn)
self.assertEqual(y.data.dtype, self.dtype)
y_data = cuda.to_cpu(y.data)
self.assertEqual(self.gy.shape, y_data.shape)
for k in six.moves.range(2):
for c in six.moves.range(3):
x = self.x[k, c]
expect = numpy.array([
[x[0:2, 0:2].sum(), x[0:2, 1:3].sum()],
[x[1:4, 0:2].sum(), x[1:4, 1:3].sum()]]) / 9
gradient_check.assert_allclose(
expect, y_data[k, c], **self.check_forward_options)
test_average_pooling_2d.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录