def check_forward(self, x_data, use_cudnn=True):
x = chainer.Variable(x_data)
y = functions.softmax(x, use_cudnn)
self.assertEqual(y.data.dtype, self.dtype)
y_expect = numpy.exp(self.x)
y_roll = numpy.rollaxis(y_expect, 1, y_expect.ndim)
for i in numpy.ndindex(y_roll.shape[:-1]):
y_roll[i] /= y_roll[i].sum()
gradient_check.assert_allclose(
y_expect, y.data, **self.check_forward_options)
评论列表
文章目录