def compute_value_loss(y, t, clip_delta=True, batch_accumulator='mean'):
"""Compute a loss for value prediction problem.
Args:
y (Variable or ndarray): Predicted values.
t (Variable or ndarray): Target values.
clip_delta (bool): Use the Huber loss function if set True.
batch_accumulator (str): 'mean' or 'sum'. 'mean' will use the mean of
the loss values in a batch. 'sum' will use the sum.
Returns:
(Variable) scalar loss
"""
assert batch_accumulator in ('mean', 'sum')
y = F.reshape(y, (-1, 1))
t = F.reshape(t, (-1, 1))
if clip_delta:
loss_sum = F.sum(F.huber_loss(y, t, delta=1.0))
if batch_accumulator == 'mean':
loss = loss_sum / y.shape[0]
elif batch_accumulator == 'sum':
loss = loss_sum
else:
loss_mean = F.mean_squared_error(y, t) / 2
if batch_accumulator == 'mean':
loss = loss_mean
elif batch_accumulator == 'sum':
loss = loss_mean * y.shape[0]
return loss
评论列表
文章目录