def forward(self, ws, cs, ls, dep_ts=None):
batchsize = len(ws)
xp = chainer.cuda.get_array_module(ws[0])
ws = map(self.emb_word, ws)
cs = [F.squeeze(
F.max_pooling_2d(
self.conv_char(
F.expand_dims(
self.emb_char(c), 1)), (int(l[0]), 1)))
for c, l in zip(cs, ls)]
xs_f = [F.dropout(F.concat([w, c]),
self.dropout_ratio, train=self.train) for w, c in zip(ws, cs)]
xs_b = [x[::-1] for x in xs_f]
cx_f, hx_f, cx_b, hx_b = self._init_state(xp, batchsize)
_, _, hs_f = self.lstm_f(hx_f, cx_f, xs_f, train=self.train)
_, _, hs_b = self.lstm_b(hx_b, cx_b, xs_b, train=self.train)
hs_b = [x[::-1] for x in hs_b]
hs = [F.concat([h_f, h_b]) for h_f, h_b in zip(hs_f, hs_b)]
dep_ys = [self.biaffine_arc(
F.elu(F.dropout(self.arc_dep(h), 0.32, train=self.train)),
F.elu(F.dropout(self.arc_head(h), 0.32, train=self.train))) for h in hs]
if dep_ts is not None:
heads = dep_ts
else:
heads = [F.argmax(y, axis=1) for y in dep_ys]
cat_ys = [
self.biaffine_tag(
F.elu(F.dropout(self.rel_dep(h), 0.32, train=self.train)),
F.elu(F.dropout(self.rel_head(
F.embed_id(t, h, ignore_label=IGNORE)), 0.32, train=self.train))) \
for h, t in zip(hs, heads)]
return cat_ys, dep_ys
评论列表
文章目录