def _compute_y_and_t(self, exp_batch, gamma):
batch_size = exp_batch['reward'].shape[0]
# Compute Q-values for current states
batch_state = exp_batch['state']
qout = self.model(batch_state)
batch_actions = exp_batch['action']
batch_q = F.reshape(qout.evaluate_actions(
batch_actions), (batch_size, 1))
with chainer.no_backprop_mode():
batch_q_target = F.reshape(
self._compute_target_values(exp_batch, gamma),
(batch_size, 1))
return batch_q, batch_q_target
评论列表
文章目录