def __init__(self, embeddings, n_labels, dropout=0.5, train=True):
vocab_size, embed_size = embeddings.shape
feature_size = embed_size
super(BLSTMBase, self).__init__(
embed=L.EmbedID(
in_size=vocab_size,
out_size=embed_size,
initialW=embeddings,
),
f_lstm=LSTM(feature_size, feature_size, dropout),
b_lstm=LSTM(feature_size, feature_size, dropout),
linear=L.Linear(feature_size * 2, n_labels),
)
self._dropout = dropout
self._n_labels = n_labels
self.train = train
评论列表
文章目录