def recursive_generator(label,sp):
dim=512 if sp>=128 else 1024
if sp==4:
input=label
else:
downsampled=tf.image.resize_area(label,(sp//2,sp),align_corners=False)
input=tf.concat([tf.image.resize_bilinear(recursive_generator(downsampled,sp//2),(sp,sp*2),align_corners=True),label],3)
net=slim.conv2d(input,dim,[3,3],rate=1,normalizer_fn=slim.layer_norm,activation_fn=lrelu,scope='g_'+str(sp)+'_conv1')
net=slim.conv2d(net,dim,[3,3],rate=1,normalizer_fn=slim.layer_norm,activation_fn=lrelu,scope='g_'+str(sp)+'_conv2')
if sp==256:
net=slim.conv2d(net,27,[1,1],rate=1,activation_fn=None,scope='g_'+str(sp)+'_conv100')
net=(net+1.0)/2.0*255.0
split0,split1,split2=tf.split(tf.transpose(net,perm=[3,1,2,0]),num_or_size_splits=3,axis=0)
net=tf.concat([split0,split1,split2],3)
return net
GTA_Diversity_256p.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录