def build_training_net(self, features, timestamps, mmsis):
self._build_model(features, timestamps, mmsis, is_training=True)
trainers = []
for i in range(len(self.training_objectives)):
trainers.append(self.training_objectives[i].build_trainer(
timestamps, mmsis))
learning_rate = tf.train.exponential_decay(
self.initial_learning_rate, slim.get_or_create_global_step(),
self.decay_examples, self.learning_decay_rate)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
return TrainNetInfo(optimizer, trainers)
vessel_characterization.py 文件源码
python
阅读 17
收藏 0
点赞 0
评论 0
评论列表
文章目录